Conteúdo / Main content
Menu Rodapé
  1. Início
  2. Cursos
  3. Engenharia Civil
  4. Cálculo I

Cálculo I

Código 10270
Ano 1
Semestre S1
Créditos ECTS 6
Carga Horária TP(60H)
Área Científica Matemática
Tipo de ensino Presencial
Estágios N/A.
Objectivos de Aprendizagem Nesta Unidade Curricular os alunos vão adquirir os conhecimentos básicos de Cálculo Diferencial e Integral de funções reais de variável real.

No final desta Unidade Curricular os estudantes deverão
- resolver inequações racionais e com módulos;
- determinar domínios e esboçar o gráfico de uma função;
- calcular limites de funções reais de variável real;
- estudar a continuidade de funções reais de variável real;
- derivar funções reais de variável real;
- saber aproximar funções por polinómios de Taylor;
- aplicar as derivadas ao cálculo de máximos e mínimos e ao esboço de gráficos de funções;
- integrar funções reais de variável real;
- aplicar integrais no cálculo de áreas planas, no cálculo de comprimento de curvas e no cálculo da área de superfície e do volume de um sólido de revolução;
- determinar a natureza de uma série numérica;
- calcular o intervalo de convergência de uma série de potências.
Conteúdos programáticos 1-Funções reais de variável real: generalidades e exemplos
1.1 Números reais
1.2 Funções; função inversa; composição de funções
1.3 Funções exponencial e logarítmica
1.4 Funções trigonométricas e suas inversas
1.5 Funções hiperbólicas
2-Funções reais de variável real: limites e continuidade
2.1 Breves noções de topologia em R
2.2 Limites
2.3 Limites infinitos e limites no infinito
2.4 Limites laterais
2.5 Assímptotas
2.6 Funções contínuas
2.7 Propriedades fundamentais das funções contínuas
3-Cálculo diferencial em R
3.1 Derivadas
3.2 Teoremas de Rolle, de Lagrange e de Cauchy
3.3 Derivadas de ordem superior e fórmula de Taylor
3.4 Aplicações
4-Cálculo integral em R
4.1 Integral de Riemann
4.2 Teorema Fundamental do Cálculo
4.3 Primitivas imediatas
4.4 Aplicações
4.5 Técnicas de primitivação e de integração
5-Sucessões e séries
5.1 Sucessões e séries de números reais
5.2 Séries de potências e de Taylor
Metodologias de Ensino e Critérios de Avaliação A avaliação será periódica.
Existe nota mínima de 6 valores para o aluno ser admitido a exame.
Efetuarão 3 testes práticos (T1, T2, T3).
A cotação dos vários testes será:
Primeiro teste (T1): 8 valores.
Segundo teste (T2): 8 valores.
Terceiro teste (T3): 4 valores.
A classificação do ensino-aprendizagem (CEA) será:
CEA = T1 + T2 + T3
A classificação final (CF) será:
CF = Não Admitido se CEA < 5.4
CF = E se 5.5 <= CEA < 9.4
CF = CEA se CEA >= 9.5
sendo E a nota do exame.
Bibliografia principal Bibliografia principal:
Alberto Simões, Apontamentos de Cálculo I, UBI.
F. R. Dias Agudo, Análise Real, Vol. I, Escolar Editora, 1989.
J. Campos Ferreira, Introdução à Análise Matemática, 6ª Edição, Fundação Calouste Gulbenkian, 1995.
Tom M. Apostol, Cálculo I, Editorial Reverté, 1994.
Bibliografia complementar:
James Stewart, Cálculo - 5ª edição, volume 1 e volume 2, CENGAGE Learning, 2008.
Lang, S., A first course in Calculus, 5th edition,Undergraduate texts in Mathematics, Springer.
Língua Português
Data da última atualização: 2024-09-25
As cookies utilizadas neste sítio web não recolhem informação pessoal que permitam a sua identificação. Ao continuar está a aceitar a política de cookies.