Conteúdo / Main content
Menu Rodapé
  1. Início
  2. Cursos
  3. Bioengenharia
  4. Cálculo II

Cálculo II

Código 9090
Ano 1
Semestre S2
Créditos ECTS 6
Carga Horária TP(60H)
Área Científica Matemática
Tipo de ensino Presencial com recurso a e-learning.
Objectivos de Aprendizagem Familiarizar os estudantes com as principais ferramentas do cálculo diferencial e integral nos espaços R^n.
Aplicação das ferramentas do cálculo nos espaços R^n na resolução de problemas do dia-a-dia.
O estudante deve ser capaz de analisar funções vetoriais e funções escalares. Nomeadamente
Calcular limites e estudar a continuidade
Calcular derivadas parciais e estudar a diferenciabilidade
Conhecer as propriedades do gradiente, sua relação com curvas/superfícies de nível, derivadas direcionais e aproximação linear
Aplicar a regra da cadeia e o teorema da função implícita
Formalizar e resolver problemas de otimização
Calcular integrais múltiplos, com o teorema de Fubini, esboçar regiões de integração, inverter a ordem de integração, identificar o sistema de coordenadas a utilizar e efetuar a mudança de variável
Aplicar os conceitos anteriores a problemas do dia-a-dia.
Resolver equações diferenciais elementares
Aplicar equações elementares em modelos matemáticos.
Conteúdos programáticos 1. Funções de Rn em Rm
1.1. O espaço Rn. Breves noções topológicas em Rn
1.2. Vetores. Norma. Produto escalar. Vetor velocidade
1.3. Funções reais de n variáveis reais e funções vectoriais
1.4. Limites e continuidade
2. Cálculo Diferencial em Rn
2.1. Derivadas Parciais. Derivadas direcionais. Gradiente
2.2. Plano Tangente
2.3. Diferenciabilidade
2.4. Derivada da função composta
2.5. Derivadas de ordem superior. Teorema de Schwarz
2.6. Teorema da função implícita
2.7. Extremos locais e absolutos
2.8. Extremos condicionados: método dos multiplicadores de Lagrange
3. Cálculo Integral em Rn
3.1. Integral de Riemann duplo e triplo: definição e exemplos
3.2. Propriedades das funções integráveis
3.3. Mudança de coordenadas
3.4. Aplicações
4. Equações Diferenciais Ordinárias
Definição, exemplos e aplicações. Separação de variáveis. Equações homogéneas e exatas.
Equações lineares, método do fator integrante. Equações de Bernoulli, Ricatti e Clairaut.
Metodologias de Ensino e Critérios de Avaliação A unidade curricular funciona em regime de aulas teórico-práticas. Na primeira parte da aula são expostos no quadro os resultados relevantes, acompanhados de exemplos. Na segunda parte da aula os alunos são convidados a resolver uma lista de exercícios do manual adoptado.
Realizar-se-ão 3 testes escritos: Teste 1 (T1),Teste 2 (T2), e Teste Global (TG).

O aluno obtém aprovação se a classificação de Ensino-Aprendizagem ou a classificação num exame for igual ou superior a 10 valores (após arredondamento às unidades).
Bibliografia principal [1] Cálculo, vol. II, James Stewart, 2006, Pioneira Thomson Learning
[2] Cálculo, vol. 2, Howard Anton, Irl Bivens, Stephen Davis, 8ª Edição, 2007, Bookman
[3] Análise Real, vol.2 - Funções de n Variáveis, Elon Lages Lima, Coleção Matemática Universitária, IMPA (Brasil), 2007.
[4] Análise Real, vol.3 - Análise Vetorial, Elon Lages Lima, Coleção Matemática Universitária, IMPA (Brasil), 2007.
[5] Vector Calculus, J. Marsden, A. Tromba, 2003, Freeman and Company.
[6] Cálculo, vol. II, T. Apostol,1994, Reverté
Língua Português
Data da última atualização: 2024-03-18
As cookies utilizadas neste sítio web não recolhem informação pessoal que permitam a sua identificação. Ao continuar está a aceitar a política de cookies.