Syllabus |
1. GENERALITIES AND EXAMPLES OF FUNCTIONS Real numbers Generalities about functions Inverse and composition of functions Polynomial, rational, absolute value, exponential, logarithmic, trigonometric, trigonometric inverse and hyperbolic functions 2. LIMITS AND CONTINUITY Topological notions Limits Continuity Bolzano and Weierstrass theorems Infinite limits, limits at infinite and asymptotes 3. DIFFERENTIAL CALCULUS Definition, rules and examples Fermat, Rolle, Lagrange and Taylor theorems Cauchy's Rule Applications 4. INTEGRAL CALCULUS Antiderivatives. Definition, properties and technics of integration Definition and properties of Riemann integral Fundamental Theorem of Calculus Applications
|
Main Bibliography |
Main Bibliography: – James Stewart, Daniel Clegg, Saleem Watson – Cálculo, Volume 1, Cengage (2022) Additional Bibliography: – Apostol, T.M., Cálculo, Vol. 1, Reverté, 1993 – H. Anton, I. Bivens, S. Davis, Cálculo, volume I, 8.ª Edição, Bookman, 2007 – Adams, Robert Alexander_ Essex, Christopher - Calculus a complete course, Pearson (2018) – João Paulo Santos, Cálculo numa Variável Real, IST Press, 2012 – Mann, W. R., Taylor, A. E., Advanced Calculus, John Wiley and Sons, 1983 – Swokowski, E. W., Cálculo com Geometria Analítica, Vol. 1 e 2, McGrawHill, 1983
|