You need to activate javascript for this site.
Menu Conteúdo Rodapé
  1. Home
  2. Courses
  3. Computational Mechanical Engineering
  4. Solid Mechanics I

Solid Mechanics I

Code 16150
Year 2
Semester S2
ECTS Credits 6
Workload TP(60H)
Scientific area Mechanics and Thermodynamics
Entry requirements N.A.
Learning outcomes Starting from matrix algebra and statics, the main objective is the study of solid mechanics using the concepts of continuum mechanics. In particular, different methodologies are used to describe the change in shape of a solid and the continuity conditions to define the strain at each point, to describe the internal stresses and equilibrium conditions with the stress state at each point, and the constitutive relationships that allow to relate stresses with strains, in particular the theory of elasticity. These concepts are applied to plane stress states, to determine stresses and strains in slender bars due to axial force, torsional moment, bending moment and shear force. These concepts are applied to the analytical structural calculus of simple geometry objects, and will allow in the future to extrapolate to the numerical structural calculus of generic geometry structures and boundary conditions.
Syllabus 1- Review of Algebra

2- Description of Shape Change

3- Description of Internal Forces in Solids

4- Constitutive Relation in the Elastic Regime

5- Stress and Strain due to Normal Force

6- Stress and Strain due to Torsion

7- Stress and Strain due to Pure Bending

8- Stress and Strain due to Combined Loads

9- Shear Force in Thin-Walled Bars

10- Yielding Criteria
Main Bibliography Bower, A. F. 2012, Applied Mechanics of Solids, CRC Press
Beer, J. e DeWolf, 2003. Mecânica dos Materiais, McGraw-Hill
Nash W. A. e Potter M. C. Resistência dos Materiais, Bookman
Language Portuguese. Tutorial support is available in English.
Last updated on: 2025-06-13

The cookies used in this website do not collect personal information that helps to identify you. By continuing you agree to the cookie policy.