Syllabus |
1. GENERALITIES AND EXAMPLES OF FUNCTIONS Real numbers Generalities about functions Inverse and composition of functions Polynomial, rational, absolute value, exponential, logarithmic, trigonometric, trigonometric inverse and hyperbolic functions
2. LIMITS AND CONTINUITY Topological notions Limits Continuity Bolzano and Weierstrass theorems Infinite limits, limits at infinite and assymptotes
3. DIFFERENTIAL CALCULUS Definition, rules and examples Fermat, Rolle, Lagrange and Taylor theorems Cauchy's Rule Applications
4. INTEGRAL CALCULUS Definition and properties of Riemann integral Fundamental Theorem of Calculus Antiderivatives Applications Techniques of antidifferentiation and of integration
5. SEQUENCES AND SERIES Sequences Convergent and divergent series Comparison, limit, D'Alembert, Cauchy and Leibniz tests Absolute convergence Power series Interval of convergence of a power series Taylor series
|
Main Bibliography |
Main bibliography – Apostol, T.M., Cálculo, Vol. 1, Reverté, 1993 – Stewart, J., Calculus (International Metric Edition), Brooks/Cole Publishing Company, 2008 – Swokowski, E. W., Cálculo com Geometria Analítica, Vol. 1 e 2, McGrawHill, 1983
Additional bibliography – Dias Agudo, F.R., Análise Real, Vol. I, Escolar Editora, 1989 – Demidovitch, B., Problemas e Exercícios de Análise Matemática, McGrawHill, 1977 – Lang, S., A First Course in Calculus, Undergraduate texts in Mathematics, Springer, 5th edition – Lima, E. L., Curso de Análise, Vol. 1, Projecto Euclides, IMPA, 1989 – Lima, E. L., Análise Real, Vol. 1, Colecção Matemática Universitária, IMPA, 2004 – Mann, W. R., Taylor, A. E., Advanced Calculus, John Wiley and Sons, 1983 – J. P. Santos, Cálculo numa Variável Real, IST Press, 2013 – Sarrico, C., Análise Matemática – Leituras e exercícios, Gradiva, 3.ª Ed., 1999
|