You need to activate javascript for this site.
Menu Conteúdo Rodapé
  1. Home
  2. Courses
  3. Aeronautical Engineering
  4. Probability and Statistics

Probability and Statistics

Code 15073
Year 1
Semester S2
ECTS Credits 6
Workload TP(60H)
Scientific area Mathematics
Entry requirements Integral calculus.
Mode of delivery Theoretical and practical lessons. Face-to-face teaching
Work placements Not aplicable.
Learning outcomes •To provide the student the basic knowledge in probability theory, random variables and the most important theoretical distributions.
•To familiarize the student with the most important concepts and methods in statistical inference, allowing him to apply these to real situations.
After approval at this UC, the Student should be able to:
O1. Formalize correctly problems involving the result of randomized trials.
O2. Identify the probabilistic models, their properties and relation to other models.
O3. Formalize correctly problems involving the result of randomized trials.
O4. Demonstrate knowledge in the field of the statistical inference, with emphasis on parametric inference.
O5. Demonstrate strong predisposition for individual and group learning.
O6. Demonstrate the ability to interpret and analyze the results obtained using a statistical software resulting from the application of acquired knowledge.
Syllabus 1 - Theory of probability: conditional probability and independence. Theorem of total probability and Bayes Theorem.
2 - Random variables. Probability distributions.
3 - Theoretical Distributions: Discrete distributions. Continuous distributions.
4 - Point and Interval Estimation.
4.1 - Point estimation. Some properties of the estimators.
4.2 - Definition of confidence interval. Confidence intervals for means, variances and proportions.
5 - Hypotheses testing: Fundamental concepts. Tests for means, proportions and variances.
6 - Non-parametric tests: Chi-square test. Kolmogorv – Smirnov test.

Main Bibliography •Pedrosa, A. e Gama, S. (2004). Introdução computacional à Probabilidade e Estatística. Fundação Calouste Gulbenkian. Lisboa
•Murteira, B. (1990). Probabilidades e Estatística. Vol I e II(2ª ed.) McGraw-Hill.
•Pestana, D. D. e Velosa, S. F. (2006). Introdução à Probabilidade e à Estatística. Volume I, 2ª Edição, Fundação Calouste Gulbenkian.
•Rohatgi, V. K. (1976). An Introduction to Probability Theory and Mathematical Statistics. J. Wiley & Sons, New York.
•Ross, S. M. (1987). Introduction to Probability Theory for Engineers and Scientists. J. Wiley & Sons, New York.
Teaching Methodologies and Assessment Criteria The assessment of knowledge is carried out throughout the semester with the completion of 2 written tests and if students do not reach the expected skills, the assessment is carried out by a written exam at the end of the semester.
Language Portuguese. Tutorial support is available in English.
Last updated on: 2024-03-19

The cookies used in this website do not collect personal information that helps to identify you. By continuing you agree to the cookie policy.