Syllabus |
1. Data Analysis 1.1. Principles and steps. 2. Construction of variables; 2.1. Creation of a database; 2.2. The notion of variable, variable types and scales of measurement; 2.3. Dependent and independent variables; 2.4. Assumptions of parametric and non-parametric tests (Chi-square, Mann-Whitney, McNemar, Wilcoxon, Kruskal-Wallis; Cochran); 2.5. Analysis of the distribution of the data and its implications; 2.6. Control variables; 2.7. Interpretation of results. 3. Data analysis using different software. 4. Review and critical analysis of the scientific literature; 4.1. Structure and fundamental characteristics of a research report; 4.2 Summary of Approach ethical aspects of research and documentary research; 4.3. Quantitative and qualitative methods: differences, limitations and complementarity:
|
Main Bibliography |
• Antonius, R. (2013). Interpreting quantitative data with IBM SPSS Statistics. London: SAGE Publications. • Balnaves, M.E, & Caputi, P. (2001). Introduction to quantitative research methods. An investigative approach. London: SAGE Publications. • Bazeley, P. (2007). Qualitative data analysis with NVivo. London: Sage Publications. • Borenstein, M., Hedges, L.V., Higgins, J.P.T., & Rothstein, H.R. (2009). Introduction to meta-analysis. Chichester: John Wiley & Sons, Ltd. • Cornillon, P.A. (2012). R for Statistics. Boca Raton, FL: Chapman & Hall/CRC Press. • Denzin, N. K, & Lincoln, Y. S. (2007). The handbook of qualitative research. London: Sage Publications. • Falissard, B. (2011). Analysis of questionnaire data with R. Boca Raton, FL: Chapman & Hall/CRC Press. • Frost, N. (2011). Qualitative research methods in psychology. Combining core approaches. UK: McGraw Hill.
|