Código |
12809
|
Ano |
1
|
Semestre |
S2
|
Créditos ECTS |
6
|
Carga Horária |
TP(60H)
|
Área Científica |
Matemática
|
Tipo de ensino |
Presencial com recurso a e-learning.
|
Objectivos de Aprendizagem |
Objectivos de aprendizagem
1. Familiarizar os estudantes com as principais ferramentas do cálculo diferencial e integral nos espaços R^n. O estudante deve ser capaz de analisar funções vetoriais e funções escalares. Nomeadamente: Calcular limites e estudar a continuidade; Calcular derivadas parciais e estudar a diferenciabilidade; Conhecer as propriedades do gradiente, sua relação com curvas/superfícies de nível, derivadas direcionais e aproximação linear; Aplicar a regra da cadeia e o teorema da função implícita; Formalizar e resolver problemas de otimização; Calcular integrais múltiplos, inverter a ordem de integração, identificar o sistema de coordenadas a utilizar e efetuar mudança de variável. 2. Familiarizar os estudantes com os resultados básicos sobre equações diferenciais ordinárias. O estudante deve ser capaz de resolver equações diferenciais elementares e aplicar equações diferenciais elementares em modelos matemáticos sobre problemas do dia-a-dia
|
Conteúdos programáticos |
1. Funções de Rn em Rm 1.1. Funções reais de n variáveis reais e funções vectoriais 1.2. Limites e continuidade 2. Cálculo Diferencial em Rn 2.1. Derivadas Parciais. Derivadas direcionais. Gradiente 2.2. Plano Tangente 2.3. Diferenciabilidade 2.4. Derivada da função composta 2.5. Derivadas de ordem superior. Teorema de Schwarz 2.6. Teorema da função implícita 2.7. Extremos locais e absolutos 2.8. Extremos condicionados: método dos multiplicadores de Lagrange 3. Cálculo Integral em Rn 3.1. Integral de Riemann duplo e triplo: definição e exemplos 3.2. Propriedades das funções integráveis 3.3. Mudança de coordenadas 3.4. Aplicações 4. Equações Diferenciais Ordinárias Definição, exemplos e aplicações. Separação de variáveis. Equações lineares, método do fator integrante. Equações de Bernoulli, Ricatti e Clairaut.
|
Metodologias de Ensino e Critérios de Avaliação |
A unidade curricular funciona em regime de aulas teórico-práticas. Na primeira parte da aula são expostos no quadro os resultados relevantes, acompanhados de exemplos. Na segunda parte da aula os alunos são convidados a resolver uma lista de exercícios do manual adoptado. Realizar-se-ão 3 testes escritos: T1,T2, e Teste Global (TG). É concedida frequência/admissão a exame a todos os alunos que tenham realizado pelo menos uma das provas T1, T2, ou TG.
O aluno obtém aprovação na unidade curricular se a classificação de Ensino-Aprendizagem ou a classificação num exame for igual ou superior a 10 valores (após arredondamento às unidades).
|
Bibliografia principal |
[1] Cálculo, vol. II, James Stewart, 2006, Pioneira Thomson Learning [2] Cálculo, vol. 2, Howard Anton, Irl Bivens, Stephen Davis, 8ª Edição, 2007, Bookman [3] Análise Real, vol.2 - Funções de n Variáveis, Elon Lages Lima, Coleção Matemática Universitária, IMPA (Brasil), 2007. [4] Análise Real, vol.3 - Análise Vetorial, Elon Lages Lima, Coleção Matemática Universitária, IMPA (Brasil), 2007. [5] Vector Calculus, J. Marsden, A. Tromba, 2003, Freeman and Company. [6] Cálculo, vol. II, T. Apostol,1994, Reverté
|
Língua |
Português
|