Código |
13422
|
Ano |
3
|
Semestre |
S2
|
Créditos ECTS |
6
|
Carga Horária |
PL(30H)/T(30H)
|
Área Científica |
Ciências Biomédicas
|
Tipo de ensino |
Presencial
|
Objectivos de Aprendizagem |
A disciplina visa apresentar aos alunos diferentes algoritmos e técnicas computacionais utilizadas na Bioinformática com foco na sua aplicação prática.
Objetivos específicos: O1) Familiarização com algoritmos e técnicas computacionais utilizadas actualmente em Bioinformática e respectiva aplicação à resolução de problemas em biologia e medicina. O2) Exploração de ferramentas computacionais e bases de dados de interesse para a resolução de problemas em Bioinformática. O3) Identificação de direcções para investigação em Bioinformática. O4) Aquisição e/ou reforço de soft skills tais como trabalho em equipa, capacidade analítica e de argumentação, discussão de ideias inter-pares e com os docentes, …
|
Conteúdos programáticos |
1.Introdução à Bioinformática 2.Bases de dados de interesse biológico 3.Noções básicas de Biologia Molecular 4.Noções básicas de Algoritmos 5.Alinhamento de sequências simples 6.Alinhamento de sequências múltiplas 7.Clustering e Biclustering 8.Árvores filogenéticas
|
Metodologias de Ensino e Critérios de Avaliação |
A avaliação do período de ensino-aprendizagem consiste em 2 provas (resolvidas individualmente), 3 avaliações práticas (realizadas em grupos de 2 elementos) e 2 desafios (individuais).
Prova de conhecimentos teóricos e práticos (T1 e T2) – 12 (6+6) valores
Avaliação prática, realizada nas aulas práticas (em grupos de 2 elementos) através de: 3 avaliações práticas (P1,P2,P3) –6 (2+2+2) valores 2 desafios (D1 e D2) –2 (1+1) valores Assiduidade mínima de 50%.
Nota final= 0.1xP1+0.1xP2+0.1xP3+0.05xD1+0.05xD2+0.3xT1+0.3xT2
O aluno obtém a classificação de Aprovado/dispensado de exame ao obter uma nota final igual ou superiora 9.5 valores.
Ou Admitido a exame, se: Frequência de 50% das aulas práticas; Nota final de período letivo igual ou superior a 6 valores.
Exame (60%) + 40%(relativo às avaliações práticas e desafios já realizadas)
|
Bibliografia principal |
1.Bioinformatics: An Introduction, Jeremy Ramsden, Third Edition, Springer-Verlag London 2015. 2.Algorithms in Bioinformatics: A Practical Introduction, Wing-Kin Sung, CRC Press 2010. 3.Essential Bioinformatics, Jin Xiong Cambridge, University Press, 2006. 4.An Introduction to Bioinformatics Algorithms, N.C, Jones & P. Pevzner, MIT Press, 2004 5.Introduction to Bioinformatics, 4th Edition, Arthur M. Lesk, Oxford University Press, 2014. 6. Artigos e material disponibilizado pelo docente.
|
Língua |
Português
|