Conteúdo / Main content
Menu Rodapé
  1. Início
  2. Cursos
  3. Engenharia Civil
  4. Matemática Computacional

Matemática Computacional

Código 14648
Ano 2
Semestre S2
Créditos ECTS 6
Carga Horária TP(60H)
Área Científica Matemática
Tipo de ensino Presencial
Estágios N/A.
Objectivos de Aprendizagem O objetivo geral desta disciplina é o estudo de métodos numéricos eficientes e estáveis para resolver alguns problemas matemáticos. O estudo feito de cada método numérico inclui a dedução analítica das fórmulas usadas, a descrição em linguagem algorítmica e a apresentação de técnicas para estimar o erro da solução.
Este objetivo é realizado através da transmissão das seguintes competências:
a) analisar os erros e determinar a sua propagação;
b) calcular os zeros e os extremos de uma função;
c) resolver sistemas de equações lineares e não lineares;
d) aproximar e interpolar, por funções polinomiais, um conjunto de dados aleatórios;
e) derivar e integrar numericamente uma função;
f) resolver numericamente equações e sistemas de equações diferenciais.
No final o aluno deve ser capaz de: Perante o modelo matemático de um problema de engenharia, identificar os possíveis métodos para o resolver, escolher o mais adequado, implementá-lo em MATLAB e criticar os resultados.
Conteúdos programáticos 1. Introdução à computação numérica: Computação em ponto flutuante; Aproximação de funções; Condicionamento de um problema e estabilidade de um método numérico. Derivação numérica.
2. Sistemas de equações lineares: Métodos diretos e instabilidade numérica; Métodos iterativos de Jacobi e Gauss-Seidel.
3. Equações não-lineares: método da bisseção, do ponto fixo e método de Newton.
4. Interpolação polinomial: fórmulas de Lagrange e de Newton e interpolação por polinómios segmentados.
5. Integração numérica: Regras de Newton-Cotes e de Gauss.
6. Resolução numérica de equações diferenciais ordinárias e sistemas de equações diferenciais: Métodos baseados na série de Taylor e métodos de Runge-Kutta; consistência, estabilidade e convergência.

Metodologias de Ensino e Critérios de Avaliação A avaliação consta de dois testes, T1(8valores) e T2(12 valores) .
Um Aluno é considerado não admitido quando a classificação por frequência (T1+T2) é inferior a 4.0 valores (sem arredondamentos na soma obtidas dos dois testes).

Todos os Alunos com o estatuto de trabalhador estudante (devidamente regularizado nos serviços académicos) estão admitidos a exame.
Um Aluno obtém aprovação por frequência quando a soma das classificações dos dois teses é superior ou igual a 9.5 valores.
Qualquer aluno que obtenha uma classificação por frequência igual ou superior a 16.5 valores deve realizar um teste extra. Caso não o realize, a sua classificação por frequência será de 16 valores.
Um Aluno obtém aprovação (por exame) quando obteve uma classificação mínima de 9.5 valores.
A classificação final é a maior de entre as quais à que o Aluno compareceu.
Bibliografia principal • R.I. Burden & J.D. Faires , " Numerical Analysis 7e", PWSKent, Boston, 2001.
• H. Pina, "Métodos Numéricos", Mc GrawHill, Alfragide, 1995.
• M.R. Valença , "Métodos Numéricos", INIC, Braga, 1988.
• A. Quarteroni e F. Saleri, “Cálculo científico com MATLAB e Octave”, Springer-Verlag, 2007.
• J.C. Butcher , "The Numerical Analysis of Ordinary Differential Equations", John Wiley & Sons, Auckland, 1987.
• E. Hairer , S.P. Nørsett & G. Wanner , " Solving Ordinary Differential Equations I ", Springer Series in Comput.
Mathematics, Vol. 8, Springer-Verlag, Heidelberg, 1987.
• E. Hairer & G. Wanner , " Solving Ordinary Differential Equations II ", Springer Series in Comput. Mathematics,
Vol. 8, Springer-Verlag, Heidelberg, 1987
Língua Português
Data da última atualização: 2025-03-21
As cookies utilizadas neste sítio web não recolhem informação pessoal que permitam a sua identificação. Ao continuar está a aceitar a política de cookies.