Learning outcomes |
The curricular unit is an introduction to Linear Algebra. It is intended to develop mathematical, logical, critical and analytical reasoning and student’s autonomy when formulating and solving problems. Concretely, at the end of the curricular unit, the student should be able to: make operations over/with matrices and apply properties; determine the rank of a matrix; classify and solve, using matrices, systems of linear equations; apply properties of the inverse of a regular matrix and determine it; calculate the determinant of a square matrix and apply properties; solve problems of Analytic Geometry; identify/sketch quadric surfaces; decide the linear independence/dependence of vectors; characterize a spanned subspace; determine the dimension of a linear space; represent a linear application by a matrix; calculate eigenvalues and eigenvectors, and apply properties; interpret and use mathematical language.
|
Main Bibliography |
Anton, H., & Busby, R. C. (2006). Álgebra Linear contemporânea. Bookman. Cabello, J. G. (2006). Álgebra Lineal. Delta. Cabezón, E. S. de. (s. d.). Las matemáticas son para siempre. https://www.ted.com/talks/eduardo_saenz_de_cabezon_math_is_forever?language=es&subtitle=pt Cabral, I., Perdigão, C., & Saiago, C. (2021). Álgebra Linear. Escolar. Dias Agudo, F. R. (1996). Introdução à Álgebra Linear e Geometria Analítica. Escolar. Lay, D. C. (2012). Álgebra Linear e suas aplicações. LTC. Lipschutz, S. (1972). Álgebra linear. McGraw-Hill. Magalhães, L. T. (2001). Álgebra Linear como introdução à Matemática Aplicada. Texto. Nering, E. D. (1970). Linear Algebra and Matrix Theory. John Wiley & Sons. Rose, Tony de. (2014). Pixar: The math behind the movies. https://www.youtube.com/watch?v=_IZMVMf4NQ0 Santana, A. P., & Queiró, J. (2010). Introdução à Álgebra Linear. gradiva. Strang, G. (1976). Linear Algebra and its applications. Academic.
|