Conteúdo / Main content
Menu Rodapé
  1. Início
  2. Cursos
  3. Matemática e Aplicações
  4. Análise Real II

Análise Real II

Código 14762
Ano 1
Semestre S2
Créditos ECTS 7,5
Carga Horária TP(75H)
Área Científica Matemática
Learning outcomes i) To understand and relate concepts and basic results on numerical series;
ii) To formulate and solve problems related to numerical series and series of functions;
iii) To understand and relate concepts and basic results about limits, continuity and derivative of vector-valued functions;
iv) To formulate and to solve problems related to limits, continuity and derivative of vector-valued functions;
v) To analyze and to understand mathematical proofs, particularly in the context of vector calculus;
vi) To communicate using mathematical language, written and orall
Syllabus 1. Series
1.1 Definition and examples
1.2 Series with fixed-sign terms
1.3 Dirichlet's criterion, Leibniz's criterion, and the integral test
1.4 Simple convergence and absolute convergence
1.5 Sequences of functions: pointwise convergence and uniform convergence
1.6 Series of functions
1.7 Power series
1.8 Definition of exponential, logarithmic, sine, and cosine functions
1.9 Taylor series

2. Functions of Several Variables
2.1 Algebraic and topological structure of Rn
2.2 Functions from Rn to R?
2.3 Limits
2.4 Continuity

3. Differential Calculus
3.1 Partial derivatives and directional derivatives
3.2 Differentiability: the derivative as a linear transformation
3.3 Derivative of a composite function
3.4 Inverse function theorem and implicit function theorem
3.5 Higher-order partial derivatives and Taylor’s formula
3.6 Simple extrema
3.7 Constrained extrema and the Lagrange multipliers method
3.8 Applications
Teaching Methodologies and Assessment Criteria The classes will be theoretical-practical. The teacher presents the concepts and enunciates the results, demonstrating many of them. It also illustrates the theory with examples and applications. The student is encouraged to participate in classes, interacting with the teacher and sometimes solving exercises and problems.
In the teaching-learning period the evaluation will be periodic and will consist of 2 tests to be carried out on April 15 and June 2. Each test will be quoted to 10 values. A student will pass if the sum of test scores has a rating greater than or equal to 9.5 values. Whenever the final classification is greater than or equal to 16.5 values, an oral test for the defense of grade will take place, with a minimum score of 16 values being guaranteed. If the defense takes place but the student does not attend, he will have a final grade equal to 16 values. If the epidemiological situation does not allow the 1st test to be carried out, the evaluation will consist of a sin
Main Bibliography - Conway, J. B. (2017). A First Course in Analysis. Cambridge University Press.
- Dias Agudo, F. R. (1994). Análise Real, vol. I. (2.ª edição). Escolar Editora.
- Ferreira, J. C. (2008). Introdução à Análise Matemática. (9.ª edição). Fundação Calouste Gulbenkian.
- Lages Lima, E. (2017). Curso de Análise, vol. 1. (14.ª edição). IMPA.
- Lages Lima, E. (2015). Curso de Análise, vol. 2. (11.ª edição). IMPA.
- Lages Lima, E. (2017). Análise Real, vol. 1. (12.ª edição). IMPA.
- Lages Lima, E. (2016). Análise Real, vol. 2. (6.ª edição). IMPA.
- Marsden, J. E., & Tromba, A. J. (2012). Vector calculus. (6th ed.). W H Freeman & Co.
- Sarrico, C. (2009). Cálculo Diferencial e Integral para Funções de Várias Variáveis. Esfera do Caos.
Language Portuguese. Tutorial support is available in English.
Data da última atualização: 2025-06-13
As cookies utilizadas neste sítio web não recolhem informação pessoal que permitam a sua identificação. Ao continuar está a aceitar a política de cookies.