Conteúdo / Main content
Menu Rodapé
  1. Início
  2. Cursos
  3. Química Industrial
  4. Cálculo II

Cálculo II

Código 15965
Ano 1
Semestre S2
Créditos ECTS 6
Carga Horária TP(60H)
Área Científica Matemática
Objectivos de Aprendizagem Resolução de problemas e interpretação de resultados envolvendo equações diferenciais ordinárias.
Domínio do cálculo diferencial e integral de funções escalares de várias variáveis reais.
No final desta unidade curricular, o estudante deve ser capaz de:
1. Resolver equações diferenciais ordinárias de primeira e de segunda ordem;
2. Formular e resolver problemas modelados por equações diferenciais ordinárias;
3. Calcular limites, estudar a continuidade e a diferenciabilidade de funções reais com várias variáveis reais;
4. Determinar extremos livres e condicionados;
5. Calcular integrais múltiplos e aplicar o teorema de mudança de variáveis;
6. Calcular áreas e volumes, utilizando integrais múltiplos.
Conteúdos programáticos 1. Equações Diferenciais Ordinárias
1.1. Definição. Ordem e grau. Solução. Problema de valor inicial.
1.2. Equações diferenciais de primeira ordem: equações de variáveis separáveis, equações diferenciais lineares.
1.3. Equações diferenciais lineares de segunda ordem com coeficientes constantes.
1.4. Aplicações.
2. Cálculo Diferencial em R^n
2.1. Estrutura algébrica e topológica em R^n.
2.2. Funções escalares de várias variáveis reais.
2.3. Limites e continuidade.
2.4. Derivadas Parciais. Derivadas direcionais. Gradiente.
2.5. Plano Tangente. Aproximação linear.
2.6. Diferenciabilidade.
2.7. Derivada da função composta.
2.8. Derivadas de ordem superior. Teorema de Schwarz.
2.9. Teorema da função implícita.
2.10. Extremos locais e absolutos.
2.11. Extremos condicionados: método dos multiplicadores de Lagrange.
3. Cálculo Integral em R^n
3.1. Integrais múltiplos: definição, exemplos e propriedades. Teorema de Fubini.
3.2. Mudança de variáveis.
3.3. Aplicações. Cálculo de áreas e volumes.
Bibliografia principal [1] Cálculo, Volume 2, James Stewart, Tradução da 7.ª edição norte-americana, 2014, Cengage Learning Edições Ltda
[2] Cálculo, Volume 2, Howard Anton, Irl Bivens, Stephen Davis, 8.ª Edição, 2007, Bookman
[3] Cálculo Diferencial e Integral para Funções de Várias Variáveis, Carlos Sarrico, 2009, Esfera do Caos
[4] Cálculo, Volume 2, T. Apostol,1994, Reverté
[5] Vector Calculus, J. Marsden, A. Tromba, 2003, Freeman and Company
[6] Cálculo Diferencial e Integral em R^n, Gabriel E. Pires, 2012, IST Press
Língua Português
Data da última atualização: 2024-03-02
As cookies utilizadas neste sítio web não recolhem informação pessoal que permitam a sua identificação. Ao continuar está a aceitar a política de cookies.