Objectivos de Aprendizagem |
O principal objetivo geral desta unidade curricular e o seguinte:
1) Desenvolver as capacidades dos estudantes na exploração e na compreensão das interações entre arte, matemática e computação.
No que respeita aos objetivos específicos desta unidade curricular, após o processo de aprendizagem, os alunos devem ser capazes de, pelo menos:
1) Compreender e interpretar as estruturas matemáticas abstratas por detrás da natureza e das obras de arte; 2) Criar modelos matemáticos e traduzir ideias em códigos de programação para desenvolver projetos criativos baseados/refletidos em algoritmos matemáticos e computação gráfica; 3) Aprender a abordar temas sob diferentes perspetivas; 4) Utilizar metodologias experimentais de caráter interdisciplinar no desenvolvimento de projetos; 5) Responder com criatividade e autonomia às exigências relacionais e organizacionais, trabalhar em equipas e cumprir prazos; 6) Comunicar eficazmente perante distintos interlocutores num contexto académico.
|
Conteúdos programáticos |
1) Introdução interdisciplinar a conceitos, técnicas e metodologias da arte, matemática e computação; 2) Espaço tridimensional e sua representação ao longo da história, perspetiva em Arte e Matemática; 3) Quarta dimensão e geometria não euclidiana na Arte Moderna; 4) Espaço de cor; 5) Ambiguidades, ilusões visuais e estereoscopia; 6) Simetria, fractais e recursão na natureza: a estética de Sierpinsky, Gasket e outros fractais; 7) Proporção áurea, número de Fibonacci; 8) Mosaicos e tesselação periódica; 9) Padrões assimétricos e manipulação de imagens; 10) Algoritmos e programação de formas/espaços 2D e 3D; 11) Arte e animação baseadas no tempo.
|
Bibliografia principal |
1) I. Greenberg (2016), Processing: Creative Coding and Computational Art, Apress. 2) S. Kalajdzievski (2022), Math and Art: An Introduction to Visual Mathematics, CRC Press. 3) K. Kaiser (2019), Make Art with Python: Programming for Creative People, Zothcorp, LLC. 4) S. Valdyanathan (2018), Creative Coding in Python: 30+ Programming Projects in Art, Games, and More, Quarry Books. 5) M. Emmer (Ed.). (1993), The Visual Mind: Art and Mathematics, MIT Press. 6) L. Henderson (2018), The Fourth Dimension and Non-Euclidean Geometry in Modern Art, The MIT Press. 7) V. Malloy (Ed.), (2018), Dimensionism: Modern Art in the Age of Einstein, MIT Press. 8) P. Thomas (2018), Quantum Art and Uncertainty, Intellect Books. 9) G. Parkinson (2008), Surrealism, Art and Modern Science: Relativity, Quantum Mechanics, Epistemology, Yale University Press. 10) L. Shlain (2007), Art and Physics: Parallel Visions in Space, Time and Light (6th ed.). HarperCollins.
|