Conteúdo / Main content
Menu Rodapé
  1. Início
  2. Cursos
  3. Engenharia Civil
  4. Mecânica dos Sólidos Contínuos

Mecânica dos Sólidos Contínuos

Código 14643
Ano 2
Semestre S1
Créditos ECTS 6
Carga Horária T(30H)/TP(30H)
Área Científica Mecânica e Estruturas
Learning outcomes O1 - To have knowledge of the basic concepts of Solid Mechanics, such as displacements, extensions and tensions, tensors of extensions and tensions.
O2 - Ability in performing one-dimensional, flat and general analyses of extensions and voltages.
O3 - Ability of the way of evaluating the balance of a point inside and on the surface of a body.
O4 - Ability in the use of the constitutive equations to make the transition between the field of tensions and the field of extensions and vice-versa, in particular for isotropic and orthotropic materials.
O5 - To have knowledge of the basic elastic limit criteria for ductile and fragile materials.
O6 - Recognize the need to check whether a given state of tension produces or does not yield or break the material.
Syllabus C1 - Review of Vectors and some Basic Concepts of 2nd Order Tensors.
C2 - Deformation State.
C3 – Stress State.
C4 - Constitutive relationships for materials with linear elasticity.
C5 - Elastic Limit Criteria. Yield criteria for ductile materials. Failure criteria for brittle materials.
Main Bibliography - Pietrzak, J., Baptista, A., Andrade, J. - Mecânica dos Sólidos Contínuos, Edições Orion (2011).
- Simões, F.M.F. – Introdução à Mecânica dos Meios Contínuos, IST Press (2017).
- Dias da Silva, V. - Mecânica e Resistência dos Materiais, Ediliber Editora (1995).
- Branco, C.A.G.M. - Mecânica dos Materiais, Fundação Calouste Gulbenkian (1998).
- Araújo, F.C. - Elasticidade e Plasticidade, Imprensa Portuguesa (1961).
- Timoshenko, S.P., Goodier, J.N. - Theory of Elasticity, McGraw-Hill (1988).
- Higdon, A., Ohlsen, E.H., Stiles, W.B., Weese, J.A., Riley, W.F. – Mecânica dos Materiais (1981).
- Fung, Y.C. - Foundations of Solid Mechanics, Prentice-Hall (1965).
- Love, A.E.H. - A Treatise on the Mathematical Theory of Elasticity, Dover Publications (1944).
- Mase, G.E. - Theory and Problems of Continuum Mechanics, McGraw-Hill (1970).
- Sokolnikoff, I.S. - Mathematical Theory of Elasticity, McGraw-Hill (1956).
Language Portuguese. Tutorial support is available in English.
Data da última atualização: 2025-01-06
As cookies utilizadas neste sítio web não recolhem informação pessoal que permitam a sua identificação. Ao continuar está a aceitar a política de cookies.