Menu Conteúdo Rodapé
  1. Início
  2. Cursos
  3. Engenharia Eletrotécnica e de Computadores
  4. Cálculo I

Cálculo I

Código 8536
Ano 1
Semestre S1
Créditos ECTS 6
Carga Horária TP(60H)
Área Científica Matemática
Tipo de ensino Presencial
Estágios N/A.
Objectivos de Aprendizagem Com esta Unidade Curricular pretende-se que os alunos adquiram conhecimentos básicos de Cálculo Diferencial e Integral de funções reais de variável real, com ênfase sobre problemas de Engenharia.
No final desta UC o estudante deverá ter adquirido e saber:
- Calcular limites de funções reais de variável real;
- Estudar a continuidade de funções reais de variável real;
- Derivar funções reais de variável real;
- Aplicar as derivadas ao cálculo de máximos e mínimos e ao esboço de gráficos de funções;
- Primitivar funções reais de variável real;
- Integrar funções reais de variável real;
- Aplicar o cálculo integral ao cálculo de áreas, ao cálculo de comprimento de curvas e ao cálculo da área de superfície e do volume de um sólido de revolução;
- Calcular limites de sucessões;
- Estudar a convergência de séries.
Conteúdos programáticos 1-Funções reais de variável real: generalidades e exemplos
1.1 Números reais
1.2 Funções; função inversa; composição de funções
1.3 Funções exponencial e logarítmica
1.4 Funções trigonométricas e suas inversas
1.5 Funções hiperbólicas
2-Funções reais de variável real: limites e continuidade
2.1 Breves noções de topologia em R
2.2 Limites
2.3 Limites infinitos e limites no infinito
2.4 Limites laterais
2.5 Assímptotas
2.6 Funções contínuas
2.7 Propriedades fundamentais das funções contínuas
3-Cálculo diferencial em R
3.1 Derivadas
3.2 Teoremas de Rolle, de Lagrange e de Cauchy
3.3 Derivadas de ordem superior e fórmula de Taylor
3.4 Aplicações
4-Cálculo integral em R
4.1 Integral de Riemann
4.2 Teorema Fundamental do Cálculo
4.3 Primitivas imediatas
4.4 Aplicações
4.5 Técnicas de primitivação e de integração
5-Sucessões e séries
5.1 Sucessões e séries de números reais
5.2 Séries de potências e de Taylor
Metodologias de Ensino e Critérios de Avaliação A avaliação será periódica.
Existe nota mínima de 6 valores para o aluno ser admitido a exame.
Efetuarão 3 testes práticos (T1, T2, T3).
A cotação dos vários testes será:
Primeiro teste (T1): 8 valores.
Segundo teste (T2): 8 valores.
Terceiro teste (T3): 4 valores.
A classificação do ensino-aprendizagem (CEA) será:
CEA = T1 + T2 + T3
A classificação final (CF) será:
CF = Não Admitido se CEA < 6
CF = E se 6 <= CEA < 10
CF = CEA se CEA >= 10
sendo E a nota do exame.
Se for detetada prática fraudulenta na realização dos testes o aluno ficará Não Admitido a Exame.
Defesa de Nota: Se a classificação final na unidade curricular for superior a 17 valores, o aluno pode optar entre ficar com a nota final de 17 valores ou realizar uma prova complementar (oral e/ou escrita) para defesa de nota em data anterior à do exame.
Bibliografia principal Bibliografia principal:
Alberto Simões, Apontamentos de Cálculo I, UBI.
F. R. Dias Agudo, Análise Real, Vol. I, Escolar Editora, 1989.
J. Campos Ferreira, Introdução à Análise Matemática, 6ª Edição, Fundação Calouste Gulbenkian, 1995.
Tom M. Apostol, Cálculo I, Editorial Reverté, 1994.
Bibliografia complementar:
James Stewart, Cálculo - 5ª edição, volume 1 e volume 2, CENGAGE Learning, 2008.
Lang, S., A first course in Calculus, 5th edition,Undergraduate texts in Mathematics, Springer.
Língua Português
Data da última atualização: 2021-10-13
As cookies utilizadas neste sítio web não recolhem informação pessoal que permitam a sua identificação. Ao continuar está a aceitar a política de cookies.