Conteúdo / Main content
Menu Rodapé
  1. Início
  2. Cursos
  3. Matemática e Aplicações
  4. Álgebra II

Álgebra II

Código 14777
Ano 2
Semestre S2
Créditos ECTS 6
Carga Horária TP(60H)
Área Científica Matemática
Objectivos de Aprendizagem Objetivos gerais:
Apreender, relacionar e aplicar conceitos e resultados sobre Teoria de Grupos, Teoria de Anéis e Teoria de Corpos.

Os aspetos mais simples e elementares da teoria de grupos e anéis foram abordados na unidade curricular Álgebra I e vários exemplos foram estudados. A unidade curricular Álgebra II é uma continuação dos estudos realizados em Álgebra I. Faz-se um estudo mais abstrato e geral.

Competências a desenvolver nos estudantes:
Capacidade de abstração e generalização;
Capacidade de raciocínio lógico
Capacidade de comunicação escrita e oral, utilizando linguagem matemática
Capacidade de formulação e resolução de problemas relacionados com estruturas algébricas.
Conteúdos programáticos 1. Grupos
1.1. Generalidades sobre Ações de grupos
1.2. O Teorema de Burnside
1.3. Os Teorema de Sylow
1.4. Grupos Abelianos livres
1.5. Grupos Abelianos finitamente gerados
1.6. Grupos Abelianos finitos
1.6.1 Decomposição em p-grupos
1.6.2 Decomposição dos p-grupos
1.6.3 O Teorema fundamental de grupos Abelianos finitos

2. Anéis
2.1. Domínios Euclidianos
2.2. Domínios de ideais principais
2.3. Domínios de fatorização única

3. Corpos
3.1. Extensões de corpos
3.1.1 Generalidades
3.1.2 Corpos de ruptura de um polinómio
3.1.3 Elementos algébricos e transcendentes
3.1.4 Construções com régua e compasso
3.2. Teoria de Galois
3.2.1 O grupo de Galois
3.2.2 Extensões normais e separáveis
3.2.3 A correspondência de Galois
3.2.4 Resolução de equações por meio de radicais
Bibliografia principal Dummit, David S.; Foote, Richard M., Abstract algebra. Third edition. John Wiley & Sons, Inc., Hoboken, NJ, 2004.
Fraleigh, J.B. A First Course in Abstract Algebra (7th edition), Pearson, 2003
Milne, J.S., Group Theory and Fields and Galois Theory, 2012
(Available from http://www.jmilne.org/math/CourseNotes/FTe6.pdf )
Monteiro, A. J., Matos, I. T., Álgebra: Um Primeiro Curso (2ª edição), Escolar Editora, 2001
Spindler, Karlheinz, Abstract algebra with applications. Vol. II. Rings and Fields. Marcel Dekker, Inc., New York, 1994
Stewart, I, Galois Theory, 4ed, CRC Press, 2015
Língua Português
Data da última atualização: 2025-06-13
As cookies utilizadas neste sítio web não recolhem informação pessoal que permitam a sua identificação. Ao continuar está a aceitar a política de cookies.