Conteúdo / Main content
Menu Rodapé
  1. Início
  2. Cursos
  3. Matemática e Aplicações
  4. Análise Funcional

Análise Funcional

Código 15625
Ano 1
Semestre S1
Créditos ECTS 6
Carga Horária TP(45H)
Área Científica Matemática
Learning outcomes
In this curricular unit are introduced the basic concepts of the theory of Banach and Hilbert spaces.

At the end of the curricular unit the students should be able to:
- apply the basic theory of complete metric spaces;
- identify the main normed spaces;
- apply the theory of the normed spaces and of the Banach spaces;
- identify the main spaces with inner product;
- apply the theory of spaces with an inner product and of Hilbert spaces;
- know and use the main theorems of functional analysis: Hahn-Banach, Banach-Steinhaus, open application and closed graph;
- apply the definition of spectrum of an operator;
- know and use the main properties of the spectrum of an operator.
Syllabus
1. Revision of complete metric spaces

2. Normed spaces and Banach spaces
2.1 Definition, elementary properties and examples
2.2 Continuous linear operators
2.3 Functionals and dual space
2.4 Finite-dimensional Banach spaces
2.5 Compactness and Riesz Lemma
3. Inner product spaces and Hilbert spaces
3.1 Definition, elementary properties and examples
3.2 Orthogonal complement and ortogonal projections
3.3 Orthonormal sets
3.4 Functionals in Hilbert spaces
3.5 Adjoint operator

4. Fundamental theorems of Functional Analysis
4.1 Zorn’s Lemma
4.2 Hahn-Banach theorem
4.3 Dual operator
4.4 Reflexive spaces
4.5 Banach-Steinhaus theorem
4.6 Open mapping theorem and closed graph theorem

5. Spectral theory
5.1 Resolvent and spectrum of an operator
5.2 Spectral properties
5.3 Spectrum of compact operators
5.4 Spectrum of self-adjoint operators
Main Bibliography
Conway, J. B. (2013). A course in functional analysis. Springer Science & Business Media.
Giles, J. R. (2000). Introduction to the analysis of normed linear spaces. Cambridge University Press.
Kreyszig, E. (1978). Introductory functional analysis with applications New York: wiley.
Michel, A. N., & Herget, C. J. (2009). Algebra and analysis for engineers and scientists. Springer Science & BusinessMedia.
Rynne, B., & Youngson, M. A. (2011). Análise Funcional Linear. Coleção Ensino da Ciência e Tecnologia. IST Press.
Taylor, A. E., & Lay, D. C. (1986). Introduction to functional analysis. Krieger Publishing
Language Portuguese. Tutorial support is available in English.
Data da última atualização: 2024-09-19
As cookies utilizadas neste sítio web não recolhem informação pessoal que permitam a sua identificação. Ao continuar está a aceitar a política de cookies.